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SUMMARY 

A method is reported for measuring mutual diffusion coefficients in gases. It is 

a gas chromatographic method, but not a broadening technique. Two short empty 
columns are placed perpendicular to one another: a diffusion column through which 
no carrier ,W flows, and a chromatographic column. The carrier gas which flows 
through the latter carries over to the detector the diffusion flux established in the 
diffusion column_ Analysis of the concentration-time curve recorded gives the value 
of the diffusion coefficient of an injected solute into the carrier gas. More reliable 
results are obtained by the so-called “chromatographic sampling”, i.e. reversing the 
direction of flow of the carrier gas at definite known times. The analytical mathemat- 
ical expression, describing the elution curves when the gas how is reversed, is derived 
and used to determine diffusion-coeflicients for fifteen gas pairs. The results are of 
high precision, and comparison with the theoretical values shows that they have also 
high accuracy_ 

INTRODUCTION 

The measurement of diffusion coefficients of a gas A into another gas B by gas 
chromatography has been reviewed by Maynard and Grushka’. It has been solely 
based on zone broadening by ditIusion of a narrow pulse of component A (the solute) 
introduced into a long empty chromatographic column, through which component B 
continuously flows as a carrier gas_ Obviously, these methods use the superposition of 
two fluxes in the same direction x: one diffusional flux, - D(&/Z_v), which is added to 
a much higher “chromato_~phic” llux, YC_ This addition results in two undesirable 
features_ Firsf long columns are required to make the diffusional flux manifest itself 
in the chromatographic signal, and second, the precision of the method is relatively 
low. It occurred to us that both can be improved if the two tluxes are separated by 
placing them perpendicular to one another, as shown schematically in Fig. 1. The 
component B enters at point Dr and meets the detector at D,, or v&z vet-SQ, flowing 
continuously through the “chromatographic column” Y f i, either in-direction F 
(forward) or-in direction R (reverse). It does not Bow, however, through the “diffu- 
sion-column”, length e, at the closed end of which the solute A is introduced, as a 
gas or vapour, in the form of a pulse (by means of a syringe or a gas valve). 
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Fig_ 1. Schematic reprexntation of the difhsion (L) and the chromarographic (I’ i I) columns for 
deterznining diffusion coefficients by the reversed-Ilow method. 

A pure diffusion flux of A into B is set up inside column L and the result of this 

at 1 = L is carried over to the detector by the carrier gas B, being recorded there as a 
concentration-time curve_ Analysis of this curve permits calculation of the diffusion 
co&cient D_-_ Even more precise results are obtained by repeatedly sampling the 
chromatographic column and recording the amount of A entering it at z = L within a 
small time interval CM. This sampling is accomplished by repeatedly reversing the 
direction of the flow of B at definite known times_ 

It must be noted that the arrangement of Fig. 1 is free of “secondary flow” 
phenomena due to coiled tubes, since the diffusion column L is relatively short (0-5-l 
m) and can be made straight_ 

EXPERIMENTAL 

The experimental set-up for the application of the reversed-flow method is very 
simple. A conventional gas chromatograph with a high-sensitivity detector, e.g. a 
flame-ionization detector (FID) is moclifed as shown diagrammatically in Fig. 2. The 
solute A.is injected into the diffusion column L (61 cm x 4 mm I.D.) while the carrier 
ES B flows through the chromato_mphic column Y + i (40 + 40 cm x 4 rmn ID.), 
either entering at Dz with the detector placed at D, or vice versa. The reversing of the 
flow direction is effected by means of valve S (four-port or six-port with two alternate 
ports connected through a small piece of lj16 in. tube). A restrictor can be placed at 
H to increase the pressure within the whole system. 

T&e carrier gases used (nitrogen, hydrogen, helium) were of gas chromato- 
graphic grade (Linde, or Aga Chropei, 5 9999 % purity)_ The various solutes in- 
jected were purchased either from Matheson Gas Products (methane 9999, ethylene 
99.98, propylene 99.7x), or from Fluka (ethane puriss grade, n-butane practical 
grade). 
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Fig. 2. Gas lines and important connections for measuring diffusion coefficients by reversed-flow _@s 
chromato_mphy. V = two-stage reducing valve and pressure regulator: N = needle valve; G = gas flow 
controiier for minimizin g variations in the gas flow-rate; S = sis-port gas sampling valve with a short l/16 
in. tube connecting two alternate ports; H = restrictor, which cxn be omitted; ‘13 = bubble flow meter; 
Amp = signal to amplifier_ 

Procedure 
While carrier gas B is flowing through the chromatographic column in direc- 

tion F (Fig. 2, valve S in position indicated by the solid lines), a small amount of 
solute A (usually 0.5 cm3 of gas at atmospheric pressure) is injected into the diffusion 
column L. After a certain time, during which no signal is noted, an asymmetric 
concentration-time curve for the solute is recorded, which rises slowly and then 
decays even more slowly. At a time (measured from the moment of injection) greater 
than the gas hold-up time in the column length 1, the direction of the carrier gas is 
reversed by switching valve S to the other position (dotted lines). After a certain dead 
time, when no signal is recorded by the detector, the chromatographic elution curve 
rises steeply, then slowly and finally returns abruptly to the original concentration- 
time curve (Fig. 3, R-peak). After a time (from the moment of reversal) greater than 
the total gas hold-up time in the total column length I f Y, the carrier gas is again 
turned to the direction F. This is followed by a new extra signal (Fig. 3, F-peak). The 
procedure is repeated several times, until a whole series of peaks is obtained. If the 
two column lengths I and P are equal, no distinction can be made between peaks 
obtained in direction F or R. 

The pressure drop along the whole column I’ + I was negligible, and the dif- 
fusion coefficients were considered to have been determined at that pressure, which 
was measured at the injection point, by means of an open mercury manometer. 

No temperature regulation was made, and the temperature reported in the 
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Fi_e. 3. A rewrsed-flow chromato_gam for measuring the ditiusion coefficient of C,H, (0.5 cm3) into N2 
(c = 0267 cm3 SCC-~) at 295’K and 1.99 atm. 

results was the ambient temperature, the variation of which was small during each 
experiment. 

THEORETICAL ANALYSIS 

The analytical mathematical expressions which describe the coucentration- 
time curve of the solute A at the detector, as well as the elution curves of peaks 
resuhing from the reversal of the flow (R- and F-peaks, Fig. 3) are derived by refer- 
ence to Fig_ 1, under the following assumptions: 

(a) Radial diffusion in ah columns is negligible. 
(b) Axial diEusion of A along coordinate s or x’, i.e. in the chromatographic 

cc&nn.n, is negligible. This seems reasonable for a high enough flow-rate of B. 
(c) The solute A is introduced in an very smah section of coiumn L, so that its 

total mass tn is concentrated initially in the plane z = 0. 

cross sectional area of the columns (cm’) 
concentration defined by the last term of eqn. 32 (mol cmm3) 
concentrations of the solute vapour A in the chrom_atdgraphic column 
with t& carrier gas B flowing in direction F or R, respectively (mol cmS3) 
concentration of-the solute vapour A in the difErsion cohnnn L (moi cme3) 
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cc = Laplace transform of c, with respect to t’ 

‘c, = double Laplace transform of c, with respect to t’ and t 

C,., C, = Laplace transforms of c,. and c, with respect to t,, - 
cx* = double Laplace transform of cx, with respect to to and t’ 
D ‘DAB = mutual diffusion coefiicient of A and B (cm’ set- ‘) 

; 
= area under the curve of F- and R-peaks (mol) 
= height above the baseline defined by eqn_ 36 (mol cmT3) 

1, 1 = lengths of the two sections of the chromatographic column depicted in Fig. 

L = 
in = 

N = 
PO, P'? P= 
4 = 

t0 = 

t to1 = 

t, t’ = 

length of diffusion column depicted in Fig. I (cm) 
mass of injected solute A (mol) 
constant defined by eqn. 13 
transform parameters with respect to t,, t’ and t, respectively 
parameter de&xxi by eqn. 3 
time measured from the injection of solute A (SC) 
total time passed from the injection of A to the last reversal of the gas flow 

(4 
time measured from the last reversal of the gas flow, in direction F or R_ 
respectively (set) 
gas hold-up time of column section I or I’, respectively (set) 
linear velocity of the carrier gas B in the chromatographic column (cm 
SEC-‘) 
volume flow-rate of carrier gas (cm3 ses- ‘) 
distance coordinates defined in Fig. I (cm) 
time parameters defined by eqns. 16 and 22. respectively (set) 
time measured from the last reversal of the flow diminished by the gas 
hold-up time in the ff ow direction, eqns. 3 1 and 27 (set). 

The problem will be considered separately in the chromatographic columns. in 
which the concentrations of A as functions of time and distance are determined by 
certain differential equations with certain initial and boundary conditions_ 

Diffusion cohnm L 

The concentration in this column c,(z_ to) obeys the diffusion equation 
second law): 

(Fick’s 

(1) 

Laplace transformation with respect to to of this equation, under the initial condition 

cz(=,O) = (&z)~(z)), where 6(z) is the Dirac delta function, gives the linear second- 
order equation 
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where 

4’ = PO/D (3) 

Eqn. 2 can be solved by using z Laplace transformation and, after taking the inverse 
transform, replacing sinh (4~) and co& (9:) by exponential functions, and collecting 
terms with the same exponential, one obtains: 

cz _= 
[ 

C,(O) - F f -!c- 
1 

exp( - q=) 
QDq 2 

+ 
[ 

C,(O) +‘““‘--$I. 
4 

exp(qz) -- 
2 (4) 

where C,(O) and C:(O) is the t, transform of the concentration cz and its Ifirst z 
derivative, respectively, at z = 0. For the approximation of a semi-infinite cylinder, 
the preexponential factor in brackets [ _ . _] of the last term would normally be set 
equal to zero, to assure that C, = 0 as z + xc. However, this approximation is not 
needed here, since there are two -boundary conditions at z = L or x = Y, by means of 
which the relation between C,(O) and C:(O) can be found. These conditions, in the 
form of their t, LapIace transforms, are 

(C&L = (C-J,,, (3 

and 

8y combining eqns. 4,s and 6, one Ends 

(1 + riDq)exp(-qx) + (I - v/Dq)exp[-q(2f_ _ z)~ (1 -i- 4Dq) - (1 - v/Dq)exp( -2qL) 
(7) 

With r = 0, Le. no flux across the boundary z = L (CT-$ also eqn. 6), eqn. 7 is 
muhipiied by the voIume element a dz and integrated between the limits 0 and L, the 
result being m/p0 - d,(O)aDl’p,. Since this integration must yield m/p,,, i.~. the t, 
Laplace transform of the total mass of A injected, it follows that C?(O) = 0. Using 
this in eqn. 7, and the approximation of neglecting exp( - ZqL) compared to 1 in the 
denominator (this is just&d for not too short diffusion coiumns and not too long 
times), the above equation becomes 

c,= m - exp( -qz) f --& exp[-q(2L-z)] 
2 

a& 1 + v/Dq 
-1 

> 
w 

This equation provides a simple way to find the solution of the diffusion equa- 
tion in-a cylinder of finite length L, without the need of using reflections on boun- 
daries, superpositions etc. It is done by putting Y = 0, when the last term in pa- 
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rentheses becomes unity, and inverse Laplace transformation with respect to p. gives 
c, as a function of time and distance: 

c_ = m 1 e~p(- &){l + exp[- L$iz)] 

a(lrDr$ 
(9) 

For L + EC the last exponential vanishes and eqn 9 reduces to the well-known 
expression for a semi-in&rite cylinder, as expected. At to = 0 eqn. 9 vanishes every- 
where except at z = 0, where it becomes infinite, in agreement with assumption (c). 

Finally, eqn. 8 with z = L gives (C&=1e, according to condition 5: 

2nz exp( -qL) 
(CA=1 = -- 

aDq 1 + v/Dq 

which, for high enough flow-rates, becomes 

(C,),=,. = _ exp( -qL) 
V 

(10) 

(11) 

since then v + Dq and 1 can be omitted from the denominator of eqn. 10. Inverse 
Laplace transformation of eqn. 11 gives 

(c,)*=I* = 
N exp( - L”,!4Df,,) 

3;’ 
to 

(121 

where 

N = ntL/l+~D)“’ (13) 

If the carrier gas B flows in the direction F, the concentration of A at x = P, as 
given by eqn. 12, spreads out in the column section I towards the detector at D, (Fig. 
1) according to the following mass balance equation, under assumption (b): 

dC 
_ 

x= 
dr, 

-v 2 t v(cx)~,I. &x--P) (14) 

where 6(x--/) is the Dirac delta function. 
Taking the to Lapiace transform of eqn. 14, with the initial condition c,(_r,O) = 

0, we tind an ordinary differential equation for C, as a function of _x. This can be 
integrated by means of its x Laplace transform, the result being 

c, = (C&t. exp( --pee) - u(X--I’) (13 
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and u(x- P) is the Heaviside unit step function, which equals 0 for x -C Y and 1 for x 

2 Y. Ai the detector, i.e. at x = P i 1, zr(_r-l) becomes zt(l) = 1 for ! > 0, and 6 

becomes i/p = t,,. i.e. the _W hold-up time in the column section I. Thus eqn. 15 

reduces to 

C, = C,V, po) exp( --_P~~_,J (17) 

and, according to a well known property of Laplace transformations (“translation”), 
the inverse transform of eqn. 17 for f, 2 0 is 

c, = c,V, f, - tw) - 4f, - t_,,) 

Using eqn. 12 for cX( /‘, lo), one finds for the concentration-time curve at the detector 

N exp [- L’/dD (to - r,)] 
c, = 

(to - t,y - a0 - 1-w) (18) 

From this curve the diffusion coefficient can be computed if the height of the 
detector signal h (which is proportional to CJ is multiplied by (ro--r,,)3it and the 
logarithm of this product is plotted against l/(r, -t& According to eqn. IS, this plot 

should be Iinear with a slope equal to - L’/4D, from which D is found. An example 
of this type of plot is shown in Fig. 4. 

55 4. Ecmqks of plotting eqn. 18 (A. t-i@-hand ordinate) and eqn. 36 (0. left-hmd ordinate) for the 
diihsion of CH, (0.5 an3) into He (r:’ = 0.283 an’ SW-‘), at 296’K and 203 atm. 

The above method based on eqn. 18, however, presupposes that: (I) a negIig- 
ible distortion of the concentration-time curve due to longitudinal diffusion along the 
column I takes place. and (2) the baseline of-the recording system is precisely adjusted 

and corrected during each determination, so that nothing is added or subtracted 
from c;_ it is not always easy to substantiate the above requiremenss, and another 
version free of these is based on what we term “chromatographic sampling” at known 
times_ This is very simply done by reversing the direction of the flow of B at definite 
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times. Each reversion of the flow takes the amount of solute A which has entered the 
chromatographic column at z = L from the diffusion column between the tunes 
fa - tJr and r,, and exhibits it as an extra peak on the otherwise continuous chroma- 
tographic signal (see Fig. 3). This is predicted by the mathematical analysis which 
foliows. 

Chromatographic sampling 
While the carrier gas is flowing in direction F giving the curve described by eqn. 

18, its flow is reversed to the direction R at a time to > t,,. The time measured from the 
moment of reversal is calied t’. The distance co-ordinate x is now changed to s’ 
defined by the relation 

x’ =P+1-X (1% 

and the concentration c,.(s’, t’) in this time interval is given by the following equa- 
tion, analogous to eqn. 14: 

ZC,. 
_ 

- = -v-z + V(C,.),.+5(.~-f) 
t3’ 

As with eqn. 14, one proceeds by taking Laplace transforms of this equation 
with respect to time, but now the r, transform is taken first, followed by the t’ 
transform_ The initial condition for the latter is the expression 

C,.(X’, pO.O) = C,. (ZgO,O) - exp(p,@) 11 - d-v’ - 01 (21) 

obtained from eqn- 1.5 by writing C,.(f,p,-,,O) for (C&=Ir, substituting 1 - u(s’--[) for 
u(s-Y) and replacing 0, as defined by eqn. 16, by its equivalent 

8 = (i--x’)/v = -(.+i,)t)lv = -8 (22) 

The result of the above double Laplace transformation is 

- exp@,,@) -11 - u(x’-I] f CJI,p,,,p’) - 6(x’- I) (23) 

Tbis ordinary differential equation is easily integrated by -using x’ Laplace traus- 
forms, giving C&f:p&f): 

c,, = G (4Pox9 

P' +Po 
(exp@,&) [I - u(_Y’ - I)] -i- exp( -p’&) - u(s' -l) + 

-exp{-@Jt p’_.)/v]) i- Cx. (i,p,,p’) - exp( -pW) - 24x! - I) (24) 

At thede&tor;- i.e. for _r’ = P t i, u(x’-r) becomes u(Y) = 1 for Y > 0, and 0’ 
becomesl’lv = th, i.e. the gas hold-up time in the column section Y. Then eqn:24 
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simplifzes to 

Taking now the inverse transforms, East with respect to p’ and then with respect to po, 

on+ finds c,. at the detector as a function oft’ and to: 

CX* = c,. (i& -Y) - [u(Y) - U(f’ - tJf)] - u(t, - z’) -I- c&t, + 7’) - tt(r’) (26) 

where 

-f = t’- t;, (27) 

The behaviour of eqn. 26 for various values of r’ is interesting. For T’ -z 0, i.e. 
for t’ < &. c,. = 0 and no signal is recorded by the detector, until the gas hold-up 
time r;, is reached, when u(Y) = 1 and the chromatographic signal rises abruptly to 
c,.(l,r, - 7’) f c,.fl,t, tr’). It falls again to c,.(l,t, tr’) when 7’ b t_w, Le. when t’ 3 
tl, -I- t,, because the square function in braces [ ] becomes zero. Then the u(f,-z’) 
factor remains unity in the above interval on account of the condition that the flow is 
reversed at t, > t,. Thus, the function described by eqn. 12, i-e_ the concentration of 
Aat.Ir= l’or_$ = 1 (cf- Fig. 1) which can be denoted by c,(P,t,) or c,,(f,t,), is shifted 
in time on reversing the flow direction. This time-ihift takes place in two opposite 
directions, “forwards” to cI. (i,t,, + T’) and “backwards” to c,. (I,&, -7’). The first shift 
starts at t’ = t$ and continues uninterrupted- It is nothing more than the continu- 
ation of eqn. 18 at the other end of the chromatographic column. The backward shift 
is barred in the interval 0 G T’ d 1, or ilcr s t’ < t$ t t,,, and therefore starts with the 
concentration c,.(&,) and eids with that of a preceding time, namely cXe(l,t,- tdr)_ 
This extra signal (R-peak) adds to the forward shift and constitutes the “chromato- 
graphic sampling” sigual. Thus, the experimental behaviour exhibited in Fig. 3 is 
predicted_ 

At a time ?’ > t& -i- 31 t the carrier gas flow is again turned to the dirzztion F, 
the time from this moment being denoted by f. The distance coordinate is changed 
from _r’ back to _K, according to eqn. 19, and the concentration C&J) is again de- 
scribed by eqn. 14 with t substituted for 2,. To solve this equation by the method of 
Laplace transformations, we need ‘rhe initial condition at t = 0. This, in the form of 
its t’ transform, is obtained from the last term of eqn. 24, since all other terms of this 
equation disappear at 5’ > t,. The remaining term, after taking the p. inverse trans- 
form, changing & to - 8 and Z&X - Z) to 1 - u(x- I’), gives the desired condition at r 
=oas 

z’,(~,r,,p’,O) = Fz(Y,t,,p’,O) - exp@‘@ [l - z&r-Y)] (281 

The rest of the solution in the t interval follows the same procedure as that outlined 
for eqn. 20. namely the f’ Laplace transform is taken first, then the t transform with 
initial condition eqn. 28..This leads to-a differential equation in x similar to eqn, 23. 
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which in turn gives the equivalent of eqn. 24, and finally the counterpart of eqn. 25 is 
obrained as 

2 _ ~~(~J,.P’,O) 
x- kid -pt_d - e.upC-PO, + &,)I - exp( -p’r;)) f 

P f p* 
i ZJP,t,.p’.p) - exp( -~t_,~) (29) 

Successive inverse transformations with respect to p and p‘ then give the c, value at 
the detector : 

cx = c,(f,r,,, - z) - [u(s) - zf(r - &)I - zz(t’ -z) f c,(r,t,,, f r) - ZZ(T) (30) 

where 

r = f - t_,* (31) 

and L,~ = r. + t’. 
This equation is symmetrical with eqn. 26 and its behaviour is analogous_ It 

predicts that c, = 0 for r < 0, and at z > 0 two functions are recorded as a sum. One 
is given by eqn. 12 with the total time rtot in place oft, and shifted forwards by r. This 
continues uninterrupted as the last term of eqn_ 30 shows. In the other function the t,,, 
is shifted backwards by x and this function vanishes when z > &_ Thus, an extra 
signal (F-peak) appears in the interval 0 d 2: < tl, “sitting” on the otherwise con- 
tinuing chromatographic curve. The function zc(t’ - r) in eqn. 30 is kept at unity in the 
above interval on account of the condition that the new reversal was at t’ > tir c t,,. 

Repeating the reversal of the carrier gas flow in the direction R for a second 
time at t > r-U i fir, then in the direction F for a third time at t’ > t$ + t,, and so 
on, two series of peaks are produced_ The R-peaks are described by eqn. 26 with [tot in 
place of to, while the F-peaks are given by eqn. 30. Since the definitions ‘-forward” 
and “reverse” are arbitrary, and the two above equations have the same form, one of 
them su5ces to describe both kinds of peaks. In what follows we make use only of 
eqn. 30. This can be written explicitly using eqn. 12 in place of ~~(f’,t~,,~-r) and 
c,(Y,t,,, + r), the resulting expression describing the concentration-time curve at the 
detector: 

c _ N exp ]- L’/4D(tl,t - r)]- 
x- (i,,, - z.)= 

- [i2 (r) - u (T - t$)] + 

4 N exp[ - L’/4D(t,, f r)] 

(&a, + $/2 . - 44 (32) 

Here, N is given by.eqn. 13, rrol is the total time passed from the injection of A to the 
last reversd of the gas flow, r the time measured from the !ast reversal of the flow 
diminished by the gas hold-up time in the direction of the flow (cf- eqns. 27 and 31) 

and tl, the bold-up time in the opposite direction of the Bow. The function r&‘-r) 
in eqn_ 30 has been assumed unity, because the time elapsing between any two 
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successive reversals is greater than the total hold-up time fM + tL_ as mentioned 
before. 

Two other relations are useful. The first is that which gives the area under the 
F- and R-peaks, taking the last term of eqn. 32 as baseline. For this purpose one can 
use eqn. 25 and the well known relation 

L?,,f= J C,.dV = ti 1 C,.dr’= ri lim 
0 0 w-01 

where in place of C,. we use only the first term on 
last term giving rise to the baseline. The result is 

(C*) (33) 

the right-hand side of eqn. 25. the 

(34) 

The area under the peaks is simply found by substituting eqn. 11 for CX.(I.po,O) and 
taking the p. inverse transform: 

r 
f = 2m erfc 

t 

L L 
~Jpt~12 - e*c 2D’/2(~, _ Qli2 -wo - f&J 1 (35) 

A second useful relation is that giving the height of the F- or R-peaks above the 

continuous chromatographic signal (the latter being taken as baseline) at r = tit, 
which is the maximum vaiue of 1c before returning to the baseline. Denoting by c, the 
last term of eqn. 32 (baseline), one finds for this height 

h E (C,-c&,;, = 
X exp ( - L2/4D(t,,, - CM)] 

&LM - r&)3.= 

Thus, the plotting of In[h(r, - &)‘:‘I against l/t,,, - fh) should result in straight 
lines with slope - L2/4D. Knowing L, D can be calculated. An example of such a plot 
is shown in Fig. I 

EESULTS AND DISCUSSION 

Using eqn. 36, vaIues for the diffusion coefhcient of five gaseous hydrocarbons 
in three carrier gases have been determined and are colected in Tabie I. The values 
and their standard errors found by regression analysis using standard least-squares 
procedures, are reduced to 1 atm after multiplication by the pressure of the experi- 
ment. This pressure is given in Table I. so- that_ one can find the actual values de- 
termined from the ratio D/p_ For the pair ethylene-nitrogen the diffusion coefhcient 
was determined at three different pressures, and for the pair methane-helium at two 
pressures. In both cases the variation of the results with small changes in pressure 
(andin ri>was.smalL I 

The precision of the method, de&red as the relative standard deviation ( %), 
can be judged from the data given for methane-helium. From the five vahres quoted, 

a precision of O-9 oA is caIcuIated. 
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TABLE 1 

DIFFUSION COEFFICIENTS OF VARiOUS SOLL?ES INTO THREE CARRIER GASES AT 
AMBIENT TEMPERATURES AND REDUCED TO 1 atm PRESSURE 

The actual vtiues found at the pressure of the expsiment. p. are simply D/p. All errors &en are “standard 
errors’*. ca!cuIated by regrtion analysis. 

Carrier Solute IO= D (cn? set -’ ) Accuraq- 

&?a s= set-‘) Cpatm) i%) 
Present work Calcd. Lkrcf- 

He CH, 

296.0 0.260 1.96 272 & 4 
293.0 0.267 1.99 142 & 0.03 
295.5 0.300 215 98 &0_2 
296.0 0.120 1.49 168 +2 
292.0 O-268 2.M 156 + 0.4 
292.0 0.538 2.71 161 & 0.4 
298.0 0x0 1.96 124 f 0.4 

293.0 0.287 1.70 699 f 3 705 
297.0 0.267 1.56 548&S 556 
296.0 0.273 1.60 386 t 3 373 

293.0 0.3@I 1.75 525 f 5 559 
296.0 0.273 1.60 485 f 3 486 

295.7 0250 1.78 527 + 3 
295.0 0.283 2.03 520 f 1 
296.0 0.283 2.03 522 & 1- 
296.0 0.283 2.03 314 + 0.2 
296.7 0.283 2.03 522 f 3 
295.6 OXiQ 215 518 & 3 
290.0 0283 203 333 * 3 
296.0 0.283 2.03 558 + 4 
291.0 0.283 2.03 412 f 4 

214 - 
144 148’ 
98.6* 96’ 

156 163’ 

12w 

669 

507 
330 
544 
440 

- 

7303 

g: 

602’ 
- 

- 

- 

364* 
- 
- 

21.3 
1.4 (2.7) 
0.3 (2.7) 
7.1 (4.3) 
0 
3.1 
3.2 

0.9 (3.4) 
1.5 (3) 
3.4 (6.8) 
6.5 (7.1) 
0.2 

26.9 
28.7 
283 
30.2 
28-2 

21 
0.9 (9.3) 
2.5 
6.8 

l The neccsary parameters G and E/k were obtained from ref. 6. 
t* This value was determined by ustig eqn. 18, without reversing the flow. 

- This is defined by eqn. 38. Numbers in parentheses are the accmacies of the respective literature 
vah!es. 

The values of the present work are compared in Table I with those calculated 
theoretically by the equation’. 

D = 0 0818583 AB - 67) 

where M,, and Ma are molar masses, and R,,,, _ is a dimensionless function of the 
temperature and of the intermolecular potential field for one A and one B molecule. 
Combing the Lennard-Jones parameters G and z/k of A and B, as given in Table B- 

1 of ref. 5, a, and cAJk are found: 

From this kTf~_- is calculated and then Table B-2 of ref- 5 gives the Q,,, value. 
--The caJcul&d values in TabIe I are for the temperature of the. experiment, 

while the literature values refer to tetxqeratttres which aer from those of the present 
work by not more than 5°C. The accuracy given in the last column of Table I is a 
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measure of the deviation of the present values from the calculated ones, defined as 

Accuracy ( %) = I DCound - Qxkdl _ 1o* 

D found 
GS) 

With the exception of two pairs containing methane as solute. this accuracy is better 

than 7-l “/d in all cases and in 8 out of the 15 pairs is better than 2.5 %. The high 
deviation of the experimental from the calculated values for the pairs methane- 
nitrogen and methane-helium. in spite of *the fact that the precision is O-9 o/0 as men- 

tioned before. is probably due to the approsimations used in the calculated values. 
Finally7 the accuracies of the present values can be compared with the accuracies of 
the respective literature values. given in parentheses in Table I and defined again by 
eqn. 33 with D,, in place of Dfound_ This comparison leads to the conclusion that, with 
the exception of ethylene-nitrogen, the values of diffusion coefficients determined by 
the method reported here are closer to the theoretical calculated values than are the 
experimental values found in the literature. under similar conditions of temperature 
and pressure_ 

One final remark is that the D values determined by the present method are 
\ery sensitive to the precision with which L. is measured. since D is proportional to L’. 
Instead of measuring directly the length L. one can use a solutexarrier gas pair of 
accurately known diffusion coefficient. and carry out a calibration experiment for L_ 
The value of L. so calculated can now be used to estimate unknown diffusion coef- 
ficients_ In the results reported in Table I. however. the actual length L was used, 
without any calibration_ 

In conclusion. with the aid of simple gas chromatography instrumentation, 
precise and accurate mutual difTusion coefficients in gases can be determined_ The 
method has certain instrumental similarities with a technique reported by Desty ef 
af_‘_ They used the diffusion of vapour from a liquid surface through a stagnant 
column cf gas in a capilIary tube. to maintain constant low concentrations of the 
vapour in a gas stream, in order to study the performance of a flame-ionization 
detector_ They also described how to determine the rate of diffusion from the open 
end of the capillary by measuring the distance between this end and the liquid men- 
isctls iiS a function of time_ 
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