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SUMMARY

A method is reported for measuring mutual diffusion coefficients in gases. It is
a gas chromatographic method, but not a broadening technique. Two short empty
columns are placed perpendicular to one another: a diffusion column through which
no carrier gas flows, and a chromatographic column. The carrier gas which flows
through the latter carries over to the detector the diffusion flux established in the
diffusion column. Analysis of the concentration—time curve recorded gives the value
of the diffusion coefficient of an injected solute into the carrier gas. More reliable
results are obtained by the so-called ‘‘chromatographic sampling™, i.e. reversing the
direction of flow of the carrier gas at definite known times. The analytical mathemat-
ical expression, describing the elution curves when the gas flow is reversed, is derived
and used to determine diffusion coefficients for fifteen gas pairs. The results are of
high precision, and comparison with the theoretical values shows that they have also
high accuracy.

INTRODUCTION

The measurement of diffusion coefficients of a gas A into another gas B by gas
chromatography has been reviewed by Maynard and Grushkal. It has been solely
based on zone broadening by diffusion of a narrow pulse of component A (the solute)
introduced into a long empty chromatographic column, through which component B
continuously flows as a carrier gas. Obviously, these methods use the superposition of
two fluxes in the same direction x: one diffusional flux, — D(cc/cx), which is added to
a much higher “chromatographic™ flux, ve. This addition results in two undesirable
features. First, long columns are reqguired to make the diffusional flux manifest itself
in the chromatographic signal, and second, the precision of the method is relatively
low. It occurred to us that both can be improved if the two fluxes are separated by
placing them perpendicular to one another, as shown schematically in Fig. 1. The
component B enters at point D, and meets the detector at D,, or vice verse, flowing
continuously through the ‘“‘chromatographic column™ /' + [, either in-direction F
(forward) or.in direction R (reverse). It does not flow, however, through the “diffu-
sion column™, length L, at the closed end of which the solute A is introduced, as a
gas or vapour, in the form of a pulse (by means of a syringe or a gas valve).
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Fig. 1. Schematic representation of the diffusion (L) and the chromatographic (/ + /) columns for
determining diffusion coefficients by the reversed-flow method.

A pure diffusion flux of A into B is set up inside column L and the result of this
at - = L is carried over to the detector by the carrier gas B, being recorded therc as a
concentration—time curve. Analysis of this curve permits calculation of the diffusion
cozfficient D.;. Even more precise results are obtained by repeatedly sampling the
chromatographic column and recording the amount of A enteringitatz = L withina
small time interval r,,. This sampling is accomplished by repeatedly reversing the
direction of the flow of B at definite known times.

It must be noted that the arrangement of Fig. 1 is free of ““secondary flow™
phenomena due to coiled tubes, since the diffusion column L is relatively short (0.5-1
m) and can be made straight.

EXPERIMENTAL

Apparatus

The experimental set-up for the application of the reversed-flow method is very
simple. A conventional gas chromatograph with a high-sensitivity detector, e.g. a
flame-ionization detector (FID) is modifed as shown diagrammaiically in Fig. 2. The
solute A is injected into the diffusion column L (61 cm x 4 mm [.D.) while the carrier
cas B flows through the chromatographic column 7/ + /(40 + 40cm x 4 mm I.D.),
either entering at D, with the detector placed at D, or vice versa. The reversing of the
flow direction is effected by means of valve S (four-port or six-port with two alternate
ports connected through a small piece of 1/16 in. tube). A restrictor can be placed at
H to increase the pressure within the whole system.

Materials

The carrier gases used (nitrcgea, hydrogen, helium) were of gas chromato-
eraphic grade (Linde, or Aga Chropei. > 99.99 % purity). The various solutes in-
jected were purchased either from Matheson Gas Products {methane 99.99, ethylene
99.98, propylene 99.7%,), or from Fiuka (ethane puriss grade, n-butane practical
grade). .
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Fig. 2. Gas lines and important connections for measuring diffusion coefficients by reversed-flow gas
chromatography. V = two-stage reducing valve and pressure regulator; N = needle valve; G = gas flow
controlier for minimizing variations in the gas flow-rate; S = six-port gas sampling valve with a short 1/16
in. tube connecting two alternate ports; H = restrictor, which can be omitted; ¥l = bubble flow meter;
Amp = signal to amplifier.

Procedure

While carrier gas B is flowing through the chromatographic column in direc-
tion F (Fig. 2, valve S in position indicated by the solid lines), a small amount of
solute A (usually 0.5 cm® of gas at atmospheric pressure) is injected inte the diffusion
column L. After a certain time, during which no signal is noted, an asymmetric
concentration—time curve for the solute is recorded, which rises slowly and then
decays even more slowly. At a time (measured from the moment of injection) greater
than the gas hold-up time in the column length /, the direction of the carrier gas is
reversed by switching valve S to the other position (dotted lines). After a certain dead
time, when no signal is recorded by the detector, the chromatographic elution curve
rises steeply, then slowly and finally returns abruptly to the original concentration—
time curve (Fig. 3, R-peak). After a time (from the moment of reversal) greater than
the total gas hold-up time in the total column length / + F, the carrier gas is again
turned to the direction F. This is followed by a new extra signal (Fig. 3, F-peak). The
procedure is repeated several times, until a whole series of peaks is obtained. If the
two column lengths / and I’ are equal, no distinction can be made between peaks
obtained in direction F or R.

The pressure drop along the whole column // + / was negligible, and the dif-
fusion coefficients were considered to have been determined at that pressure, which
was measured at the injection point, by means of an open mercury manometer.

- No temperature regulation was made, and the temperature reported in the
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Fig. 3. A reversed-flow chromatogram for measuring the diffusion coefficient of C,H; (0.5 cm®) into N,
(F = 0.267 cm® sec™ %) at 293°K and 1.99 aum.

results was the ambient temperature, the variation of which was small during each
experiment.

THEORETICAL ANALYSIS

The analytical mathematical expressions which describe the concentration—
time curve of the solute A at the detector, as well as the elution curves of peaks
resulting from the reversal of the flow (R- and F-peaks, Flg 3) are derived by refer-
ence to Fig. 1, under the following assumptions:

(a) Radlal diffusion in all columns is negligible.

(b) Axial diffusion of A along coordinate x or X/, i.e. in the chromatographic
column, is negligible. This seems reasonable for a high enough flow-rate of B.

(c) The solute A is introduced in an very smali section of column Z, so that its
total mass m is concentrated mmally in the plane z = 0.

Notation )

a = cross sectional area of the columns (cm?)

c; . concentration defined by the last term of eqn. 32 (mot cm™3)

¢, ¢, = concentrations of the solute vapour A in the chromatographic column
with the carrier gas B flowing in direction F or R, respectively (mol cm™3)

c- = concentration of the solute vapour A in the diffusion column L (molcm -3 )

I
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= Laplace transform of ¢, with respect to ¢’

X

<, = double Laplace transform of ¢, with respect to ¢ and ¢

C.., C. = Laplace transforms of c.. and ¢, with respect to ¢,

C. = double Laplace transform of ¢, with respect to 7, and ¢’

D =D,; = mutual diffusion coefficient of A and B (cm> sec™?)

f = area under the curve of F- and R-peaks (mol)

h = height above the baseline defined by eqn. 36 (mol cm ™3)

Lr = lengths of the two sections of the chromatographic column depicted in Fig.
I (cm)

L = length of diffusion column depicted in Fig. 1 (cm)

m = mass of injected solute A (mol)

N = constant defined by eqn. 13

Do. D’. p= transform parameters with respect to 1,5, ¢” and ¢, respectively

q = parameter defined by eqn. 3

to = time measured from the injection of solute A (sec)

tion = total time passed from the injection of A to the last reversal of the gas flow
(sec)

Lt = time measured from the last reversal of the gas flow, in direction F or R.
respectively (sec)

1y, ty = gas hold-up time of column section / or /', respectively (sec)

v = linear velocity of the carrier gas B in the chromatographic column (cm
sec”1)

1% = volume flow-rate of carrier gas (cm> sec™1)

X, X', - = distance coordinates defined in Fig. 1 (cm)

6,0 = time parameters defined by eqns. 16 and 22, respectively (sec)

T, T = time measured from the last reversal of the flow diminished by the gas

hold-up time in the flow direction, eqns. 31 and 27 (sec).

The problem will be considered separately in the chromatographic columns. in
which the concentrations of A as functions of time and distance are determined by
certain differential equations with certain initial and boundary conditions.

Diffusion column L
The concentration in this column c.(z, 7,) obeys the diffusion equation (Fick's
second law):

- ~3 -
CcC. c-C.
= = D= 8
cty éz?

Laplace transformation with respecti to 7, of this equation, under the initial condition
c.(z,0) = (mmfa)d(z), where 6(2) is the Dirac delta function, gives the linear second-
order equation

dZC

5= qzC. = ,— —_— 5( ) » ) 2)
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where
qz = pofD QA)

Eqn. 2 can be solved by using = Laplace transformation and, after taking the inverse
transform, replacing sinh (¢=z) and cosh (g-) by exponential functions, and collecting
terms with the same exponential, one obtains:

C_(0) m |exp(—gq:) C. (0) m
q + aDgq ] 2 [C'(O) + - aDq:I'
_exp;qZ) @

C. = [C:(O) -

where C.(0) and C.(0) is the 1, transform of the concentration c. and its first =
derivative, respectively, at = = 0. For the approximation of a semi-infinite cylinder,
the pre-exponential factor in brackets [...] of the last term would normally be set
equal to zero, to assure that C. = 0 as - — oc. However, this approximation is not
needed here, since there are two boundary conditions at = = L or x = F, by means of
which the relation between C.(0) and C.(0) can be found. These conditions, in the
form of their ¢, Laplace transforms, are

(C:):=L = (Cx)x=l' (5)
and
-D (f&) = v(C)rer (6)
€ J-=1

By combining eqns. 4, 3 and 6, one finds

mo CZ-(O)]‘(I + v/Dq)exp(—gqz) + (1 — v/Dglexp[— gL — )]
(1 + v/Dq) — (1 — v/Dq)exp(—2gL)

()

aDq q

With v = 0, i.e. no flux across the boundary = = L (¢f. also eqn. 6), eqn. 7 is
multiplied by the volume element a d= and integrated between the limits 0 and L, the
result being m/p, — C.(0)aD/p,. Since this integration must yield m/p,, i.e. the 1,
Laplace transform of the total mass of A injected, it follows that C_(0) = 0. Using
this in eqn. 7, and the approximation of neglecting exp(—2¢qL) compared to 1 in the
denominator (this is justified for not too short diffusion columns and not too long
times), the above equation becomes

m
N aDg

exp(—gz) +

5 }
exp{—¢(2L—2)] (1-+_V/1—).q— —1) o ®

m
abDgq

This equation provides a simple way to find the solution of the diffusion equa-
tion in a cylinder of finite length L, without the need of using reflections on boun-
daries, superpositions etc. It is done by putting v = 0, when the last term in pa-
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rentheses becomes unity, and inverse Laplace transformation with respect to p, gives
c. as a function of time and distance:

i 22 LEL—2)T
c. = ——exp(—- ){l + exp [—— —-————1} )
a(zD to)% 4Dz, Dy,

For L — oc the last exponential vanishes and eqn. 9 reduces to the well-known

expression for a semi-infinite cylinder, as expected. At 7, = 0 eqn. ¢ vanishes every-

where except at z = 0, where it becomes infinite, in agreement with assumption (c).
Finally, eqn. 8 with = = L gives (C,).-,, according to condition 5:

2m  exp(— ql) (10)

(Cx)x=l =aDq l+ V/Dq

which, for high enough flow-rates, becomes

2n
(Cx x=t = _p'p exP(—qL) (11)

since then v > Dg and 1 can be omitted from the denominator of eqn. 10. Inverse
Laplace transformation of egn. 11 gives

N exp(—L?*/4Dt,)

5]
3?

(12)

(Cx)x=l‘ =

where

N = mL/V(aD)'? (13)

Chromatographic column I’ + |

If the carrier gas B flows in the direction F, the concentrationof Aat x = /', as
given by eqn. 12, spreads out in the column section / towards the detector at D, (Fig.
1) according to the following mass balance equation, under assumption (b):

-~

%= v =4 o), 3(x—1) (14)
oty éx

where 8(x—/) is the Dirac delta function.

Taking the 7, Laplace transform of egn. 14, with the initial condition c_(x,0) =
0, we find an ordinary differential eqguation for C, 2s a function of x. This can be
integrated by means of its x Laplace transform, the result being

C. = (C.=r exp(—pob) - ulx—1) ‘ a3)
where ) ’ -

8 = (x—P)jv ‘ (16)
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and u{x— /') is the Heaviside unit step function, which equals 0 for x < /' and 1 for x
= F. Al the detector, f.e. at x = I + I, u(x—1) becomes u(/) = 1 for{ > 0, and @
becomes Ifv = t,,. i.e. the gas hold-up time in the column section /. Thus egn. 15
reduces to )

Cx = Cx(1’3 pO) exp( —pOt.\!) (17)

and, according to a well known property of Laplace transformations (“translation™),
the inverse transform of eqn. 17 for z,, = 0is
€ = (. fo—ty)-tlly — Iyg)

Using eqn. 12 for ¢ (7, 1), one finds for the concentration—time curve at the detector

Nexp [—L3*4D (15 — 1)}

x (to _ [.H)3,'2

u(’o_tu) (18)

From this curve the diffusion coefficient can be computed if the height of the
detector signal A (which is proportional to c¢,) is multiplied by (1, —1,,)%*? and the
logarithm of this product is plotted against 1/(7y, — f,,). According to eqn. 18, this plot
should be linear with a slope equal to — L?/4D, from which D is found. An example
of this type of plot is shown in Fig. 4.
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Fig. 4. Exampies of plotting eqn. 18 (A, right-hand ordinate) and eqn. 36 (O, left-hand ordinate) for the
diffusion of CH, (0.5 cm?) inio He (} = 0.283 cm® sec™!), at 296°K and 2.03 atm.

The above method based on eqn. 18, however, presupposes that: (1) a neglig-
ible distortion of the concentration—time curve due to longitudinal diffusion along the
column / takes place, and (2) the baseline of the recording system is precisely adjusted
and corrected during each determination, so that nothing is added or subtracied
from c.. It is not always easy to substantiate the above requirements, and another
version stee of these is based on what we term ““chromatographic sampling™ at known
umes. This is very simply done by reversing the direction of the flow of B at definite
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times. Each reversion of the flow takes the amount of solute A which has entered the
chromatographic column at z = L from the diffusion columa between the times
L — Uy and 1, and exhibits it as an extra peak on the otherwise continuous chroma-
tographic signal (see Fig. 3). This is predicted by the mathematical analysis which
follows.

Chromatographic sampling

While the carrier gas is flowing in direction F giving the curve described by egn.
18, its flow is reversed to the direction R at a time f; > f,,. The time measured from the
moment of reversal is called ¢. The distance co-ordinate x is now changed to x’

defined by the relation
xX=I'+71—x ) (19)

and the concentration c,-(x’, ') in this time interval is given by the following equa-
tion, analogous to egn. 14:

=10(x’ =) (20)

As with eqn. 14, one proceeds by taking Laplace transforms of this equation
with respect to time, but now the 7, transform is taken first, followed by the ¢
transform. The initial condition for the latter is the expression

Cx' (-Yla pO’O) = Cx' (Itp()’o) " eXP(Poel) [l - u(x' - I)] (21)

obtained from eqn. 15 by writing C,..(/,p,,0) for (C,), _;, substituting | — u(x"— /) for
u(x—{) and replacing 0, as defined by eqa. 16, by its equivalent

0=(U-Xx)v=—(x=Djv= -6 (22)

The result of the above double Laplace transformation is

dC. p =  Cu.(pe0 . . _ .
dxf T+ %-Cx. = —(—‘:‘)—)-exp(poe)-[l — w(x 1] + C..({pg.p)-o(x"~0) (23)

This ordinary differential equation is easily integraied by using x* Laplace trans-
forms, giving C.. (X" ,pg.p):

C——‘x- Cx" (l:-P (4] ,0)

» {exp(po®) [1 — u(x' — D] + exp(—p'@)-u(x'—1) +

—em{—(pol + XYW} + Co-(bpo.p)-exp(—p' 0} -u(x’—1) (24)

At the detector ie.forx =t + 1 u(x’—10) becom&s u(y =1for ¥ > 0, and &
becomes I'/v = t,,, i.e. the gas hold-up time in the column section /. Then eqn.-24
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simplifies to

—_ C . t!, ,O » 24 ' 4
C. = 7=‘+—’“;—) fexp(—p'ts)—exp[—p iy + tadl-exp(—Pota)} + Crllpop)exp
o

(—pt) (25

Taking now the inverse transforms, first with respect to p” and then with respect to p,,
one finds c_. at the detector as a function of ¢ and ¢,:

€ = Cp-(llg—7") - [T ~u(x’ —ty )] - ulty — ') + el ty+1")-u(z’) (26)

where

=U—1y 27N

The behaviour of egn. 26 for various values of t° is interesting. For t° < 0, i.e.
for ' < Iy, ¢, = 0 and no signal is recorded by the detector, until the gas hold-up
time 7,, is reached, when u(z") = 1 and the chromatographic signal rises abruptly to
Co(l2o—7) + ¢ {lto+ 7). It falls again to ¢ (L1, + 1) when ©° = 1y, i.e. when ¢’ =
ty + iy, because the square function in braces [ } becomes zero. Then the u(t;—<")
factor remains unity in the above interval on account of the condition that the flow is
reversed at 7, > I,,. Thus, the function described by eqn. 12, i.e. the concentration of
Aatx = I' or X’ = I(c¢f. Fig. 1) which can be denoted by . (I',ty) or c..(1,15), is shifted
in time on reversing the flow direction. This time-shift takes place in two opposite
directions, “forwards™ to c_-(1,t, + ") and “"backwards™ to c¢,.({,t, —7*). The first shift
starts at 7’ = 73, and continues uninterrupied. It is nothing more than the continu-
ztion of egn. 18 at the other end of the chromatographic column. The backward shift
isbarredintheinterval0 < t" < f,,0r iy < ¢ < 4y + ¢y and therefore starts with the
concentration c,.(/,,) and ends with that of a preceding time, namely c..(/,to — I4/)-
This extra signal (R-peak) adds to the forward shift and constitutes the “‘chromato-
graphic sampling™ signal. Thus, the experimental behaviour exhibited in Fig. 3 is
predicted.

At atime ! > 1, + t,, the carrier gas flow is again turned to the direstion F,
the time from this moment being denoted by 7. The distance coordinate is changed
from x’ back to x, according to eqn. 19, and the concentration ¢, (x,t) is again de-
scribed by eqn. 14 with 7 substituted for #,. To solve this equation by the method of
Laplace transformations, we need the initial condition at 1 = 0. This, in the form of
its ¢’ transform, is obtained from the last term of egn. 24, since all other terms of this
equation disappear at t” > f,,. The remaining term, after taking the p, inverse trans-
form, changing & to —8and u{x'—Hto 1 — u{x—-1), glves the desired condition at 7
= 0 as

Cx,15.0°,0) = . (F,15.p",0)-exp(p’6) [1 — ul(x—1I)] (28)

The rest of the solution in the 7 interval follows the same procedure as that outlined
for eqn. 20, namely the 1" Laplace transform is taken first, then the ¢ transform with
initial condition eqn. 28.. This leads to-a differential equation in x similar to eqn. 23,
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which in turn gives the equivalent of eqn. 24, and finally the counterpart of eqn. 25 is
obtained as

= -c‘ (1,’t 1~ ’?0 ’ 7 4t
2 = "—p%‘;—) {exp(—pty) —exp[—p(ty + 3] -exp(~p' i)} +
+ €. (0 10.0".P) - €Xp(—ply) (29)

Successive inverse transformations with respect to p and p’ then give the ¢, value at
the detector:

€ = (Lt —7)-[t(z) — u(z—1,))-u(t’ —7) + (st +7) -2(7) (30)

where

T=1— Iy (31)

and 1, =1, + 1.

This equation is symmetrical with eqn. 26 and its behaviour is analogous. It
predicts that ¢, = 0 for z < 0, and at ¢ > 0 two functions are recorded as a sum. One
is given by eqn. 12 with the total time ¢, in place of ¢, and shifted forwards by t. This
continues uninterrupted as the last term of eqn. 30 shows. In the other function the 7.,
is shifted backwards by 7 and this function vanishes when t > 13,. Thus, an extra
signal (F-peak) appears in the interval 0 < 7 < ), “sitting” on the ctherwise con-
tinuing chromatographic curve. The function «{t’ — ) in eqn. 30 is kept at unity in the
above interval on account of the condition that the new reversal was at 1" > 1y, + fy,.

Repeating the reversal of the carrier gas flow in the direction R for a second
time at £ > fy + I3 then in the direction F for a third time at ¢’ > 1, + t,,, and so
on, two series of peaks are produced. The R-peaks are described by eqn. 26 with 7, in
place of z,, while the F-peaks are given by eqn. 30. Since the definitions ““forward™
and “‘reverse™ are arbitrary, and the two above equations have the same form, one of
them suffices to describe both kinds of peaks. In what follows we make use only of
eqn. 30. This can be written explicitly using eqn. 12 in place of ¢ (/,f,,,—7) and
. {l'.1,,+7), the resulting expression describing the concentration—time curve at the
detector:

N —1%/4D - -
L= oA e = Ol ) —uG— 50l +

N N expl—L?/4D(ty +7)] y
(o + ¥

(7) 32)

Here, N is given: by eqn. 13, 7, is the total time passed from the injection of A to the
last reversal of the gas flow, 7 the time measured from the last reversal of the flow
diminished by the gas hold-up time in the direction of the flow (¢f. eqns. 27 and 31)
and #}, the hold-up time in the opposite direction of the flow. The function u(’ —17)
in eqn. 30 has been assumed unity, because the time elapsing between any two
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successive reversals is greater than the total hold-up time r,, + t),. as mentioned
before.

Two other relations are useful. The first is that which gives the area under the
F- and R-peaks, taking the last term of eqn. 32 as baseline. For this purpose one can
use eqn. 25 and the well known relation

P f=[CedV =V [ C.dr=V lim (C.) (33)
o o (p"—0)

where in place of C,. we use only the first term on the right-hand side of eqn. 25, the
last term giving rise to the baseline. The result is

5 Co (Lpo,0
L = V-%p")-[l — eXp(—Polu)] 9

The area under the peaks is simply found by substituting eqn. 11 for C..(/.p,.0) and
taking the p, inverse transform:

r L L <
f= 2m e!'fCW — erfc 2D”2(Io—-tv)1i2-u(to - IM)] (33)

A second useful relation is that giving the height of the F- or R-peaks above the
continuous chromatographic signal (the latter being taken as baseline) at © = 1y,
which is the maximum value of t before returning to the baseline. Denoting by ¢, the
last term of eqn. 32 (baseline), one finds for this height

Nexp (- L*/4AD(1,,, — i)} 3
R B s o

Thus, the plotting of InfA(z,,, — 3,)**] against 1/(¢,,, — ;) should result in straight
lines with slope — L?/4D. Knowing L, D can be calculated. An example of such a plot
is shown in Fig. 4.

RESULTS AND DISCUSSION

Using eqn. 36, values for the diffusion coefficient of five gaseous hydrocarbons
in three carrier gases have been determined and are collected in Table I. The values
and their standard errors found by regression analysis using standard least-squares
procedures, are reduced to 1 atm after multiplication by the pressure of the experi-
ment. This pressure is given in Table 1. so that one can find the actual values de-
termined from the ratio D/p. For the pair ethylene-nitrogen the diffusion coefficient
was determined at three different pressures, and for the pair methane-helium at two
pressures. In both cases the variation of the results with small changes in pressure
(and in V) was small.

The precision of the method, deﬁned as the relative standard deviation (%),
can be judged from the data given for methane-helium. From the ﬁve values quoted,
a precision of 0.9 % is calculated.
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TABLE1

DIFFUSION COEFFICIENTS OF VARIOUS SOLUTES INTO THREE CARRIER GASES AT
AMBIENT TEMPERATURES AND REDUCED TO 1 atm PRESSURE

The actual values found at the pressure of the experiment. p. are simply D/p. All errors given are **standard
errors”, calculated by regression analysis.

Carrier  Solute 'a | 2 p 10® D (cm? sec™t) Accuracy **
gas gas (°K) (cm?®sec™) (atm) (%)
Present work Calcd. Lip.rs1-
N, CH, 2960 0.260 196 272 +4 214 - 213
C,Hg 2930 0.267 1.9 142 + 003 144 1482 1.4 (2
n'CH,, 2955 0.300 215 98 02 986+ 96 0327
C,H, 296.0 0.120 1.49 168 + 2 156 1632 7.1(4.3)
2920 0268 2. 156 =04 o
292.0 0.538 2.7 161 + 0.4 3.1
CsHy 2980 0260 196 124 + 04  120* - 3.2
H, CH, 293.0 0.287 1.70 699 4+ 3 705 730° 0.9 (3.49)
C,Hg 297.0 0.267 1.56 548 £ 5 556 5403 1.503)
n-CH,, 2960 0273 1.60 38 + 3 373 400° 3.4 (6.8)
CH, 2930 0.300 175 525+5 559 602  6.5(7.1)
C;Hg 2960 0.273 1.60 485 + 3 486 - 0.2
He CH_ 295.7 0.250 1.78 527 + 3 669 — 269
2950 0.283 2.03 520 + 1 28.7
296.0 0.283 2.03 522 + 1+* 282
2960 0.283 203 514 + 0.2 30.2
296.7 0.283 2.03 522 4+ 3 28.2
C,H, 2956 0300 - 215 518 £3 507 - 21
nCH,, 2900 0283 203 33313 330 364° 09 (9.3)
C,H, 296.0 0.283 2.03 558 + 4 544 — 2.5
C H, 2010 0283 203 412 + 4 440 — 6.8

* The necessary parameters ¢ and g/k were obtained from ref. 6.
*=* This value was determined by using eqn. 18, without reversing the flow.
**+* This is defined by eqn. 38. Numbers in parentheses are the accuracies of the respective literature
values.

The values of the present work are compared in Table I with those calculated

theoretically by the equation®.
1 1\
D,z = 00018583 732 — + —} [poisQp.as (37)
IMA MB ”

where M, and My are molar masses, and Q,, ,; is 2 dimensionless function of the
temperature and of the intermolecular poteatial field for one A and one B molecule.
Combining the Lennard—Jones parameters ¢ and g/k of A and B, as given in Table B-
1 of ref. S, 6,5 and £,5/k are found:

G = (04 + o*)/2an<‘l£"‘B ~ (2 )"
AB ‘ A B k ;— k k
From this kT/e,y is calculated and then Table B-2 of ref. 5 gives the Qj 5 value.
- The calculated values in Table I are for the temperature of the experiment,
while the literature values refer to iemperatures which differ from those of the present
work by not more than 5°C. The accuracy given in the last column of Table I is a
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measure of the deviation of the present values from the calculated ones, defined as

D — D
Accuracy (%) = l ‘°“°; real 100 (38)
found

With the exception of two pairs containing methane as solute, this accuracy is better
than 7.1%; in all cases and in 8 out of the 135 pairs is better than 2.5%. The high
deviation of the experimental from the calculated values for the pairs methane-
nitrogen and methane-helium. in spite of the fact that the precision is 0.9 % as men-
tioned before. is probably due to the approximations used in the calculated values.
Finally_ the accuracies of the present values can be compared with the accuracies of
the respective literature values. given in parentheses in Table I and defined again by
eqn. 38 with Dy; in place of Dy, 4. This comparison leads to the conclusion that, with
the exception of ethyvlene—nitrogen, the values of diffusion coefficients determined by
the method reported here are closer to the theoretical calculated values than are the
experimental values found in the literature. under similar conditions of temperature
and pressure.

One final remark is that the D values determined by the present method are
\ery sensitive to the precision with which L is measured. since D is proportional to L>.
Instead of measuring directly the length L. one can use a solute—carrier gas pair of
accurately known diffusion coefficient. and carry out a calibration experiment for L.
The value of L so calculated can now be used to estimate unknown diffusion coef-
ficients. In the resulis reported in Table i. however. the actual length L was used,
without any calibraticn.

In conclusion, with the aid of simple gas chromatography instrumentation,
precise and accurate mutual diffusion coefficients in gases can be determined. The
method has certain instrumental similarities with a technique reported by Desty er
al”. They used the diffusion of vapour from a liquid surface through a stagnant
column cf gas in a capillary tube. o maintain constant low concentrations of the
vapour in a gas stream, in order to study the performance of a flame-ionization
detector. They also described how to determine the rate of diffusion from the open
end of the capillary by measuring the distance between this end and the liquid men-
iscus as a function of time.
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